Keeping Track to Selenium Metabolism

The technique allows for infinitesimal amounts of selenium to be quantified in their different chemical forms.

Spanish and Danish researchers have developed a method for the in vivo study of the unknown metabolism of selenium, an essential element for living beings. The technique can help clarify whether or not it possesses the anti-tumour properties that have been attributed to it and yet have not been verified through clinical trials.

“It is vox populi that doctors around the world recommend selenium supplements to complement traditional therapy against cancer and the AIDS virus but the truth is that the basics of these properties are not clear,” explains to SINC Justo Giner, a chemist from the University of Oviedo (Spain).

“Even the general metabolism of selenium has not been completely cleared up,” adds Giner who, along with other researchers at the same university and the University of Pharmaceutical Sciences of Copenhagen (Denmark), has developed a new methodology for discovering how this element moves around living organisms. The study has been published in the March issue of the ‘Analytical and Bioanalytical Chemistry’ journal.

The in vivo study was carried out on laboratory rats, which were administered a stable metabolic tracer of enriched selenium (77Se). According to the researcher, “it opens the door for transferring this method to clinical trials on humans given that innocuous, non-radioactive isotopes are used.”

In line with expected findings, the results reveal that selenium concentrations in biological tissue, blood and urine samples can indeed be analysed. Therefore, mass spectrometry techniques are employed along with a second isotopic tracer (74Se), which helps to quantify “with unequivocal precision” infinitesimal amounts of selenium in its different chemical forms that are distributed by the body.

Selenium is an antioxidant and plays an important role in the body’s immune response. Understanding the path that it takes from the moment it is administered to when it is excreted could help to clarify its metabolism and its possible protecting effect against cancer and HIV.

The ideal dose of selenium

The main sources of selenium come from foods such as yeasts, animal products (meat, seafood, dairy products) and vegetables like broccoli, wheat-germ, nuts (especially Brazil nuts), oats, garlic and barley. The current recommended daily intake of selenium is approximately 55 micrograms for women and 70 micrograms for men.

Selenium deficiency is associated with different pathologies like endemic cardiomyopathy, cystic fibrosis, multiple sclerosis, rheumatoid arthritis, haemolysis and muscular dystrophy. Furthermore, thyroid metabolism is affected by selenium levels since the glands deiodinasa enzymes are in fact selenoproteins.

In contrast though, when intake is higher than nutritional requirements, selenium is considered a ‘nutraceutical’. Mainly thanks to its antioxidant properties this means that it is beneficial for the health as long as it does not surpass the threshold in which it starts to become toxic.

 

Reference

Lunøe K, Martínez-Sierra JG, Gammelgaard B, Alonso JI. Internal correction of spectral interferences and mass bias for selenium metabolism studies using enriched stable isotopes in combination with multiple linear regression. Anal Bioanal Chem 2012; 402 (9): 2749-63.

 

Omega-3 Fatty Acids May Help to Reduce the Physical Harm Caused by Smoking

New study presented at the World Congress of Cardiology organized by the World Heart Federation 

Omega-3 fatty acids may help to reduce the physical harm caused by smoking, according to a new study presented yesterday (20 April 2012) at the World Congress of Cardiology in Dubai, United Arab Emirates.

The study, carried out in Greece, assessed the effect of four-week oral treatment with 2 g/day of omega-3 fatty acids on the arterial wall properties of cigarette smokers. The results showed that short-term treatment with omega-3 fatty acids improves arterial stiffness and moderates the acute smoking-induced impairment of vascular elastic properties in smokers.

“These findings suggest that omega-3 fatty acids inhibit the detrimental effects of smoking on arterial function, which is an independent prognostic marker of cardiovascular risk,” said Dr. Gerasimos Siasos, University of Athens Medical School, 1st Department of Cardiology, “Hippokration” Hospital. “The cardioprotective effects of omega-3 fatty acids appear to be due to a synergism between multiple, intricate mechanisms involving anti-inflammatory and anti-atherosclerotic effects. Furthermore, AHA recommends that people without documented history of coronary heart disease should consume a variety of fish (preferably oily – rich in omega-3 fatty acids) at least twice per week.”

The World Heart Federation strongly encourages all smokers to quit,” said Dr Kathryn Taubert, Chief Science Officer at the World Heart Federation. “The only way to protect your body from the harmful effects of tobacco is to stop smoking. We encourage all people, both smokers and non-smokers, to eat healthy diets, which includes foods rich in omega-3 fatty acids.”

 

Big doses of vitamin C may lower blood pressure

Taking large doses of vitamin C may moderately reduce blood pressure, according to an analysis of years of research by Johns Hopkins scientists. But the researchers stopped short of suggesting people load up on supplements.

“Our research suggests a modest blood pressure lowering effect with vitamin C supplementation, but before we can recommend supplements as a treatment for high blood pressure, we really need more research to understand the implications of taking them,” says Edgar “Pete” R. Miller III, M.D., Ph.D., an associate professor in the division of general internal medicine at the Johns Hopkins University School of Medicine and leader of the study published in the American Journal of Clinical Nutrition.

Roughly 30 percent of adults in the United States have high blood pressure, or hypertension, an important risk factor for heart disease and stroke. Successful treatment may include drugs, exercise, weight loss, and dietary changes such as reducing salt intake. Some experts believe that large amounts of vitamin C, an essential micronutrient found primarily in fruits and vegetables, could lower pressure as well, but randomized, controlled dietary intervention studies — the gold standard of nutrition research — have produced mixed results.

Miller and his colleagues reviewed and analyzed data from 29 randomized, controlled, previously published clinical trials that reported systolic and/or diastolic blood pressure values and also compared vitamin C intake to a placebo. What they found is that taking an average of 500 milligrams of vitamin C daily — about five times the recommended daily requirement — reduced blood pressure by 3.84 millimeters of mercury in the short term. Among those diagnosed with hypertension, the drop was nearly 5 millimeters of mercury.

By comparison, Miller says, patients who take blood pressure medication such as ACE inhibitors or diuretics (so-called “water pills”) can expect a roughly 10 millimeter of mercury reduction in blood pressure.

Five hundred milligrams of vitamin C is the amount in about six cups of orange juice. The recommended daily intake of vitamin C for adults is 90 milligrams.

“Although our review found only a moderate impact on blood pressure, if the entire U.S. population lowered blood pressure by 3 milliliters of mercury, there would be a lot fewer strokes,” Miller says. Miller cautions, however, that none of the studies his team reviewed show that vitamin C directly prevents or reduces rates of cardiovascular disease, including stroke.

Scientists have focused on vitamin C’s potential role in blood pressure reduction because of the nutrient’s biological and physiological effects. For example, vitamin C may act as a diuretic, causing the kidneys to remove more sodium and water from the body, which helps to relax the blood vessel walls, thereby lowering blood pressure.

Nutritional supplements are a USD 28 billion-a-year industry, and marketing claims, newspaper stories and testimonials often make them hard to resist, Miller says. People often view supplements as a “natural alternative” and preferable to drugs for high blood pressure or other ailments, he adds, despite mounting evidence that many supplements don’t work and in some cases may cause harm.

“People love to take vitamins regardless of the evidence or lack of it,” Miller says. “We’re trying to raise the bar and provide evidence-based guidance about whether supplements help or actually do harm.” With respect to vitamin C, he says, the jury is still out.

Other study authors from Johns Hopkins include Stephen P. Juraschek, an M.D., Ph.D. candidate; Eliseo Guallar, M.D., Dr.Ph.; and Lawrence J. Appel, M.D., M.P.H.

 

Reference 

Juraschek SP, Guallar E, Appel LJ, Miller ER 3rd. Effects of vitamin C supplementation on blood pressure: a meta-analysis of randomized controlled trials. Am J Clin Nutr 2012 Apr 4. [Epub ahead of print]

 

Is Sugar Toxic?

If you are what you eat, then what does it mean that the average American consumes 130 pounds of sugar a year? Dr. Sanjay Gupta reports on new research showing that beyond weight gain, sugar can take a serious toll on your health, worsening conditions ranging from heart disease to cancer. Some physicians go so far as to call sugar a toxin (CBS News, 2012).

 

Intravenous Vitamin C May be Beneficial in Treatment of Shingles

Intravenously administered ascorbic acid may have beneficial effects on herpes zoster-associated pain, lesions and accompanying complaintsThis according to a German study published in the April 2012 issue of the Medical Science Monitor. 

Not only the acute symptoms of herpes zoster can be diminished by high-dose vitamin C. Even long-term sequelae, like painful postherpetic neuralgia, may be mitigated or even fully avoided. 

 

Martin Schencking, Claudia Vollbracht, Gabriele Weiss, Jennifer Lebert, Andreas Biller, Birgitt Goyvaerts, and Karin Kraft

Intravenous Vitamin C in the treatment of shingles: Results of a multicenter prospective cohort study
Med Sci Monit 2012; 18 (4): CR 215-224 

 

ABSTRACT

Background: Vitamin C is an immune-relevant micronutrient, which is depleted in viral infections and this deficiency seems to play a critical role in the pathogenesis of herpes infections and in the development of postherpetic neuralgia. The objective of this observational multicenter study was to evaluate the utilization, safety and efficacy of intravenously administrated vitamin C in patients with shingles.

Material/Methods: Between April 2009 and December 2010 16 general practitioners recorded data of 67 participants with symptomatic herpes zoster who received vitamin C intravenously (Pascorbin® 7.5 g/50 ml) for approximately 2 weeks in addition to standard treatment. The assessment of pain (VAS) and the dermatologic symptoms of shingles such as hemorrhagic lesions and the number of efflorescences were investigated in a follow-up observation phase of up to 12 weeks.

Results: Mean declines of pain scores (VAS), number of affected dermatomes and efflorescences, and the presence of hemorrhagic vesicles between the baseline and follow-up assessments at 2 and 12 weeks were statistically significant. Overall, 6.4% of the participants experienced post-herpetic neuralgia. Common complaints such as general fatigue and impaired concentration also improved during the study. The effects and the tolerability of the treatment were evaluated positively by the physicians. The risk of developing PHN was reduced.

Conclusions: The data presented here provide evidence that concomitant use of intravenously administered ascorbic acid may have beneficial effects on herpes zoster-associated pain, dermatologic findings and accompanying common complaints. To confirm our findings, randomized, placebo-controlled clinical studies are necessary.

 

Nutrition and Physical Degeneration

A Comparison of Primitive and Modern Diets and Their Effects 

Dr. Weston A. Price (1870 – 1948) was a Cleveland dentist, who has been called the Charles Darwin of Nutrition. Searching for the causes of dental decay and physical degeneration he observed daily in his dental practice, he turned from test tubes and microscopes to study people with fine teeth the isolated primitives.

In 1939, he published Nutrition and Physical Degeneration. The book startled the worlds of science and nutrition with its documented evidence of primitive populations encountering civilisation, adopting modern diets, and finding that their health worsened. It remains the basic book in this area and is essential reading for those concerned with food and health.

Nutrition and Physical DegenerationTitle: Nutrition and Physical Degeneration Author: Weston A. Price * A Project Gutenberg of Australia eBook * eBook No.: 0200251h.html Language: English Date first posted: 2002 Date most recently updated: April 2012 Project Gutenberg of Australia eBooks are created from printed editions which are in the public domain in Australia, unless a copyright notice is included.

Embedly Powered

 

Read More

The Price-Pottenger Nutrition Foundation (PPNF)

Weston A. Price Foundation

Weston Price, Wikipedia article

 

Why all migraine patients should be treated with magnesium

Magnesium, the second most abundant intracellular cation, is essential in many intracellular processes and appears to play an important role in migraine pathogenesis. Routine blood tests do not reflect true body magnesium stores since <2 % is in the measurable, extracellular space, 67 % is in the bone and 31 % is located intracellularly. Lack of magnesium may promote cortical spreading depression, hyperaggregation of platelets, affect serotonin receptor function, and influence synthesis and release of a variety of neurotransmitters. Migraine sufferers may develop magnesium deficiency due to genetic inability to absorb magnesium, inherited renal magnesium wasting, excretion of excessive amounts of magnesium due to stress, low nutritional intake, and several other reasons. There is strong evidence that magnesium deficiency is much more prevalent in migraine sufferers than in healthy controls. Double-blind, placebo-controlled trials have produced mixed results, most likely because both magnesium deficient and non-deficient patients were included in these trials. This is akin to giving cyanocobalamine in a blinded fashion to a group of people with peripheral neuropathy without regard to their cyanocobalamine levels. Both oral and intravenous magnesium are widely available, extremely safe, very inexpensive and for patients who are magnesium deficient can be highly effective. Considering these features of magnesium, the fact that magnesium deficiency may be present in up to half of migraine patients, and that routine blood tests are not indicative of magnesium status, empiric treatment with at least oral magnesium is warranted in all migraine sufferers.

Journal of Neural Transmission, Online First™ – SpringerLinkMagnesium, the second most abundant intracellular cation, is essential in many intracellular processes and appears to play an important role in migraine pathogenesis. Routine blood tests do not reflect true body magnesium stores since <2 % is in the measurable, extracellular space, 67 % is in the bone and 31 % is located intracellularly.

Embedly Powered

Reference

Mauskop A, Varughese J. Why all migraine patients should be treated with magnesium. J Neural Transm. 2012 Mar 18. [Epub ahead of print]

 

Antioxidant may disrupt Alzheimer’s disease process

According to new study published in the Journal of Alzheimer’s Disease

Alzheimer’s disease (AD) is now the sixth leading cause of death among Americans, affecting nearly 1 in 8 people over the age of 65. There is currently no treatment that alters the course of this disease. However, an increasing amount of evidence suggests that changes in the way the body handles iron and other metals like copper and zinc may start years before the onset of AD symptoms. A new study shows that reducing iron levels in blood plasma may protect the brain from changes related to AD.

In the current study a group of investigators from led by Dr. Othman Ghribi, PhD, Associate Professor, Department of Pharmacology, Physiology, and Therapeutics, University of North Dakota School of Medicine and Health Sciences, rabbits were fed a high-cholesterol diet which caused them to accumulate plaques of a small protein called beta-amyloid (Aβ). These plaques are toxic to neurons and central to the development of Alzheimer’s disease. The rabbits also developed changes in tau protein, which is part of the skeleton of neurons. When this protein becomes heavily phosphorylated, the ability of neurons to conduct electrical signals is disrupted. Following treatment with a drug called deferiprone (an iron chelator), the iron level in the rabbits’ blood plasma was reduced and the levels of both beta-amyloid and phosphorylated tau in the brain were returned to normal levels.

Another degenerative process in AD involves the production of reactive oxygen species (ROS) that can damage neurons in the brain. Deferiprone is also thought to suppress this reactive oxygen damage caused by free iron in the bloodstream, however in this study there was no difference in reactive oxygen species in the treated group. It appears that iron in the AD brain is located in the wrong places – in particular it accumulates to very high levels in the cores of beta-amyloid plaques and is very reactive in this setting.

According to Dr. Ghribi, “Our data show that treatment with the iron chelator deferiprone opposes several pathological events induced by a cholesterol-enriched diet…Deferiprone reduced the generation of Aβ and lowered levels of tau phosphorylation.” While there was no effect on ROS levels, he comments that “It is possible that a higher dose of deferiprone, or combination therapy of deferiprone together with an antioxidant to prevent ROS generation would more-fully protect against the deleterious effects of cholesterol-enriched diet that are relevant to AD pathology.”

Noted expert on metals metabolism research on AD Ashley Bush, MD, PhD, Mental Health Research Institute, Melbourne, Australia, adds that “this research highlights the role of metal ions as key modulators for the toxic interactions of risk factors for Alzheimer’s disease, in this case cholesterol. Drugs targeting these metal interactions hold promise as disease-modifying agents.”

 

Reference

Prasanthi JR, Schrag M, Dasari B, Marwarha G, Kirsch WM, Ghribi O. Deferiprone Reduces Amyloid-β and Tau Phosphorylation Levels but not Reactive Oxygen Species Generation in Hippocampus of Rabbits Fed a Cholesterol-Enriched Diet. J Alzheimers Dis. 2012 Mar 9. [Epub ahead of print]

 

Eating flavonoids protects men against Parkinson’s disease

Men who eat flavonoid-rich foods such as berries, tea, apples and red wine significantly reduce their risk of developing Parkinson’s disease, according to new research by Harvard University and the University of East Anglia (UEA).

Published April 4 in the journal Neurology®, the findings add to the growing body of evidence that regular consumption of some flavonoids can have a marked effect on human health. Recent studies have shown that these compounds can offer protection against a wide range of diseases including heart disease, hypertension, some cancers and dementia.

This latest study is the first study in humans to show that flavonoids can protect neurons against diseases of the brain such as Parkinson’s.

Around 130,000 men and women took part in the research. More than 800 had developed Parkinson’s disease within 20 years of follow-up. After a detailed analysis of their diets and adjusting for age and lifestyle, male participants who ate the most flavonoids were shown to be 40 per cent less likely to develop the disease than those who ate the least. No similar link was found for total flavonoid intake in women.

The research was led by Dr Xiang Gao of Harvard School of Public Health in collaboration with Prof Aedin Cassidy of the Department of Nutrition, Norwich Medical School at UEA.

“These exciting findings provide further confirmation that regular consumption of flavonoids can have potential health benefits,” said Prof Cassidy.

“This is the first study in humans to look at the associations between the range of flavonoids in the diet and the risk of developing Parkinson’s disease and our findings suggest that a sub-class of flavonoids called anthocyanins may have neuroprotective effects.”

Prof Gao said: “Interestingly, anthocyanins and berry fruits, which are rich in anthocyanins, seem to be associated with a lower risk of Parkinson’s disease in pooled analyses. Participants who consumed one or more portions of berry fruits each week were around 25 per cent less likely to develop Parkinson’s disease, relative to those who did not eat berry fruits. Given the other potential health effects of berry fruits, such as lowering risk of hypertension as reported in our previous studies, it is good to regularly add these fruits to your diet.”

Flavonoids are a group of naturally occurring, bioactive compunds found in many plant-based foods and drinks. In this study the main protective effect was from higher intake of anthocyanins, which are present in berries and other fruits and vegetables including aubergines, blackcurrants and blackberries. Those who consumed the most anthocyanins had a 24 per cent reduction in risk of developing Parkinson’s disease and strawberries and blueberries were the top two sources in the US diet.

The findings must now be confirmed by other large epidemiological studies and clinical trials.

Parkinson’s disease is a progresssive neurological condition affecting one in 500 people, which equates to 127,000 people in the UK. There are few effective drug therapies available.

Dr Kieran Breen, director of research at Parkinson’s UK said: “This study raises lots of interesting questions about how diet may influence our risk of Parkinson’s and we welcome any new research that could potentially lead to prevention.

“While these new results look interesting there are still a lot of questions to answer and much more research to do before we really know how important diet might be for people with Parkinson’s.”

 

Reference

Gao X, Cassidy A, Schwarzschild MA, Rimm EB, Ascherio A. Habitual intake of dietary flavonoids and risk of Parkinson disease. Neurology, 2012 DOI: 10.1212/WNL.0b013e31824f7fc4

 

A Nutritional Approach to AIDS

According to Bradfield & Foster ( 2006) is it possible to reverse all the  symptoms of AIDS in dying patients using  nutrition alone. This requires selenium and the amino acids, cysteine, tryptophan and glutamine.

Dr. Harold D. Foster, Ph.D. (1933-2009) was one of the giants in orthomolecular medicine with boundless enthusiasm and a prolific gift of writing. He was a researcher with a soaring scientific mind who made unique contributions to the understanding of health and disease.

Starting in 2004, a series of medical trials were conducted based on Dr. Foster’s research into the geographical correlations seen with HIV/AIDS, focusing on the nutritional deficiencies caused by the virus and the disease.

“HIV encodes for one of the human glutathione peroxidases. As a result, as it is replicated it deprives HIV-seropositive individuals of the selenoenzyme glutathione peroxidase and its four key components, namely selenium, cysteine, glutamine and tryptophan. Slowly but surely, this depletion process causes severe deficiencies of all these nutrients. Their lack, in turn, is behind the major symptoms of AIDS, including the collapse of the immune system, increased susceptibility to cancer, myocardial infarction, depression, muscle wasting, diarrhea, psychosis and dementia” (excerpted from hdfoster.com).

Marnie Bradfield & Harold D. Foster concluded in 2006 the following in an article in  Journal of Orthomolecular Medicine:

Several conclusions appear obvious from the African nutritional trials being used to test the efficacy of selenium and amino acids as a treatment for HIV/AIDS. Firstly, it is possible to reverse all the symptoms of AIDS in dying patients using nutrition alone. Secondly, this requires selenium and the amino acids, cysteine,tryptophan and glutamine. Thirdly, while selenium alone can slow HIV replication, eventually HIV/AIDS patients also need amino acid supplements. These can be given temporarily until deficiencies are corrected. The patients can then return to selenium supplementation alone for several months, until the more complex nutritional mixture is again required for another month. There appear to be no adverse side affects from these nutritional treatments and patients are delighted with their greatly improved health status.

For more information on the science and research based on Dr.Foster’s work, visit The Harold Foster Foundation and Foster Health

 

References

Bradfield M, Foster HD. The Successful Orthomolecular Treatment of AIDS: Accummulating Evidence from Africa. Journal of Orthomolecular Medicine 2006; 21 (4): 193-196.

Foster HD. What Really Causes AIDS. TraffordPublishing, Victoria BC. 2002.