Keeping Track to Selenium Metabolism

The technique allows for infinitesimal amounts of selenium to be quantified in their different chemical forms.

Spanish and Danish researchers have developed a method for the in vivo study of the unknown metabolism of selenium, an essential element for living beings. The technique can help clarify whether or not it possesses the anti-tumour properties that have been attributed to it and yet have not been verified through clinical trials.

“It is vox populi that doctors around the world recommend selenium supplements to complement traditional therapy against cancer and the AIDS virus but the truth is that the basics of these properties are not clear,” explains to SINC Justo Giner, a chemist from the University of Oviedo (Spain).

“Even the general metabolism of selenium has not been completely cleared up,” adds Giner who, along with other researchers at the same university and the University of Pharmaceutical Sciences of Copenhagen (Denmark), has developed a new methodology for discovering how this element moves around living organisms. The study has been published in the March issue of the ‘Analytical and Bioanalytical Chemistry’ journal.

The in vivo study was carried out on laboratory rats, which were administered a stable metabolic tracer of enriched selenium (77Se). According to the researcher, “it opens the door for transferring this method to clinical trials on humans given that innocuous, non-radioactive isotopes are used.”

In line with expected findings, the results reveal that selenium concentrations in biological tissue, blood and urine samples can indeed be analysed. Therefore, mass spectrometry techniques are employed along with a second isotopic tracer (74Se), which helps to quantify “with unequivocal precision” infinitesimal amounts of selenium in its different chemical forms that are distributed by the body.

Selenium is an antioxidant and plays an important role in the body’s immune response. Understanding the path that it takes from the moment it is administered to when it is excreted could help to clarify its metabolism and its possible protecting effect against cancer and HIV.

The ideal dose of selenium

The main sources of selenium come from foods such as yeasts, animal products (meat, seafood, dairy products) and vegetables like broccoli, wheat-germ, nuts (especially Brazil nuts), oats, garlic and barley. The current recommended daily intake of selenium is approximately 55 micrograms for women and 70 micrograms for men.

Selenium deficiency is associated with different pathologies like endemic cardiomyopathy, cystic fibrosis, multiple sclerosis, rheumatoid arthritis, haemolysis and muscular dystrophy. Furthermore, thyroid metabolism is affected by selenium levels since the glands deiodinasa enzymes are in fact selenoproteins.

In contrast though, when intake is higher than nutritional requirements, selenium is considered a ‘nutraceutical’. Mainly thanks to its antioxidant properties this means that it is beneficial for the health as long as it does not surpass the threshold in which it starts to become toxic.

 

Reference

Lunøe K, Martínez-Sierra JG, Gammelgaard B, Alonso JI. Internal correction of spectral interferences and mass bias for selenium metabolism studies using enriched stable isotopes in combination with multiple linear regression. Anal Bioanal Chem 2012; 402 (9): 2749-63.

 

A Nutritional Approach to AIDS

According to Bradfield & Foster ( 2006) is it possible to reverse all the  symptoms of AIDS in dying patients using  nutrition alone. This requires selenium and the amino acids, cysteine, tryptophan and glutamine.

Dr. Harold D. Foster, Ph.D. (1933-2009) was one of the giants in orthomolecular medicine with boundless enthusiasm and a prolific gift of writing. He was a researcher with a soaring scientific mind who made unique contributions to the understanding of health and disease.

Starting in 2004, a series of medical trials were conducted based on Dr. Foster’s research into the geographical correlations seen with HIV/AIDS, focusing on the nutritional deficiencies caused by the virus and the disease.

“HIV encodes for one of the human glutathione peroxidases. As a result, as it is replicated it deprives HIV-seropositive individuals of the selenoenzyme glutathione peroxidase and its four key components, namely selenium, cysteine, glutamine and tryptophan. Slowly but surely, this depletion process causes severe deficiencies of all these nutrients. Their lack, in turn, is behind the major symptoms of AIDS, including the collapse of the immune system, increased susceptibility to cancer, myocardial infarction, depression, muscle wasting, diarrhea, psychosis and dementia” (excerpted from hdfoster.com).

Marnie Bradfield & Harold D. Foster concluded in 2006 the following in an article in  Journal of Orthomolecular Medicine:

Several conclusions appear obvious from the African nutritional trials being used to test the efficacy of selenium and amino acids as a treatment for HIV/AIDS. Firstly, it is possible to reverse all the symptoms of AIDS in dying patients using nutrition alone. Secondly, this requires selenium and the amino acids, cysteine,tryptophan and glutamine. Thirdly, while selenium alone can slow HIV replication, eventually HIV/AIDS patients also need amino acid supplements. These can be given temporarily until deficiencies are corrected. The patients can then return to selenium supplementation alone for several months, until the more complex nutritional mixture is again required for another month. There appear to be no adverse side affects from these nutritional treatments and patients are delighted with their greatly improved health status.

For more information on the science and research based on Dr.Foster’s work, visit The Harold Foster Foundation and Foster Health

 

References

Bradfield M, Foster HD. The Successful Orthomolecular Treatment of AIDS: Accummulating Evidence from Africa. Journal of Orthomolecular Medicine 2006; 21 (4): 193-196.

Foster HD. What Really Causes AIDS. TraffordPublishing, Victoria BC. 2002.