A Diet High in Choline During Pregnancy May Mean Less Stress for Baby

New research from Cornell University indicates that pregnant women who increase choline intake in the third trimester of pregnancy may reduce the risk of the baby developing metabolic and chronic stress-related diseases like high blood pressure and diabetes later in life (1). The results, published in the latest edition of the Journal of the Federation of American Societies for Experimental Biology (The FASEB Journal), suggest that choline, a nutrient found in high quantities in eggs, may help protect against the effects of a mother’s stress during pregnancy (1).

Previous research indicates high exposure to the stress hormone cortisol during pregnancy, often due to maternal anxiety or depression, may make offspring vulnerable to stress-induced illness and chronic conditions (2, 3). This finding adds to the growing body of evidence demonstrating the importance of choline in fetal development.

A Closer Look at the Study

Twenty-four women in the third trimester of pregnancy were randomly assigned to consume either 480 milligrams (mg) choline per day or 930 mg per day for 12 weeks prior to delivery. Researchers collected maternal and placental blood samples as well as samples of placental tissue. They then compared cortisol levels and genetic differences among all the samples. The researchers observed lower levels of cortisol in the placental cord and changes in cortisol-regulating genes in both the placental and fetal tissue among women in the higher choline intake group. “The study findings raise the exciting possibility that a higher maternal choline intake may counter some of the adverse effects of prenatal stress on behavioral, neuroendocrine, and metabolic development in the offspring,” says Marie Caudill, PhD, Cornell University, who is an author of the study and a leading choline researcher.

Choline: A Vital Nutrient

Choline is especially important for pregnant women – it has been shown to play an important role in fetal and infant brain development, affecting the areas of the brain responsible for memory and life-long learning ability. In addition, research shows women with diets low in choline have four times greater risk of having babies with neural tube defects, such as spina bifida (4).

Emerging research also shows choline may have additional benefits in other areas, including:

  • Breast cancer prevention: A study funded by the National Institutes of Health concluded that dietary choline is associated with a 24 percent reduced risk of breast cancer (5).
  • Anti-inflammatory: Foods rich in choline may help reduce the risk of inflammation associated with chronic diseases such as cardiovascular disease, bone loss, dementia and Alzheimer’s disease (6).
  • Brain function: Choline also promotes adult brain function by preserving the structure of brain cell membranes and is an essential component of acetylcholine, the neurotransmitter involved in memory function and muscle control (7).

The Incredible Excellent Source of Choline

Despite its important role in the body, only one in 10 Americans is meeting the Adequate Intake (AI) guidelines for choline (8). Eggs are an excellent source of choline, containing 125 mg per egg. Neva Cochran, registered dietitian and nutrition communications consultant, explains that the nutritional benefits of eggs are not merely limited to choline. “Not only are eggs an excellent source of choline, they contain many other nutrients pregnant women need most, such as high-quality protein, iron and folate—all for just about 15 cents apiece,” says Cochran.

In order to get adequate amounts of choline, Cochran suggests the following tips:

  • Find it in Food: A great way to get your daily dose of choline is to include choline-rich foods in the diet, such as eggs, lean beef, cauliflower and peanuts. Also keep in mind most multivitamins, even prenatal vitamins, provide far less than the Adequate Intake for choline.
  • Don’t Skip the Yolk: Choline is found exclusively in the egg yolk, not the white. Nearly half of the protein and most of the vitamins and minerals are also contained in the yolk.

 

References

1. Jiang, X., J. Yan, A. A. West, C. A. Perry, O. V. Malysheva, S. Devapatla, E. Pressman, F. Vermeylen, and M. A. Caudill. Maternal choline intake alters the epigenetic state of fetal cortisol-regulating genes in humans. FASEB J 2012; 26: 3563-3574.

2. Levitt, N. S., Lindsay, R. S., Holmes, M. C., and Seckl, J. R. Dexamethasone in the last week of pregnancy attenuates hippocampal glucocorticoid receptor gene expression and elevates blood pressure in the adult offspring in the rat. Neuroendocrinology 1996; 64: 412.

3. Levitt, N. S., Lambert, E. V., Woods, D., Hales, C. N., Andrew, R., and Seckl, J. R. Impaired glucose tolerance and elevated blood pressure in low birth weight, nonobese, young South African adults: early programming of cortisol axis. J Clin Endocrinol Metab 2000; 85: 4611.

4. Shaw GM, et al. Periconceptional dietary intake of choline and betaine and neural tube defects in offspring. Am J Epidemiol 2004; 160: 102-9.

5. Xu X, et al. Choline metabolism and risk of breast cancer in population-based study. FASEB J 2008; 22: 1-8.

6. Cho E, et al. Dietary choline and betaine assessed by food-frequency questionnaire in relation to plasma total homocysteine concentration in the Framingham Offspring Study. AJCN 2006; 83: 905-11.

6. Cho E, et al. Dietary choline and betaine assessed by food-frequency questionnaire in relation to plasma total homocysteine concentration in the Framingham Offspring Study. AJCN 2006; 83: 905-11.

7. Moeller SM, et al. The Potential Role of Dietary Xanthophylls in Cataract and Age-Related Macular Degeneration. J Am Coll Nutr 2000; 19 (5): 522S-527S.

8. Jensen HH, et al. Choline in the diets of the US population: NHANES, 2003-2004. Abstract presented at Experimental Biology 2007.

 

Prenatal Choline May Program Healthier Babies

Increased maternal intake of the nutrient choline could reduce their kid’s chances of developing hypertension and diabetes later in life.

In a study led by Marie Caudill, associate professor of nutritional sciences, and graduate student Xinyin Jiang, a group of third-trimester pregnant women consumed 930 milligrams of choline, more than double the recommended 450 milligram daily intake.

The result for their babies was 33 per cent lower concentrations of cortisol – a hormone produced in response to stress that also increases blood sugar – compared to those from a control group of women who consumed about 480 milligrams of choline.

Caudill believes this happened because the choline changed the expression patterns of genes involved in cortisol production.

The work is the first human study to suggest a role for choline in the “programming” of key biological processes in the baby.

“The study findings raise the exciting possibility that a higher maternal choline intake may counter some of the adverse effects of prenatal stress on behavioral, neuroendocrine and metabolic development in the offspring,” Caudill said.

This could be especially useful for women experiencing anxiety and depression during their pregnancy, as well as conditions such as pre-eclampsia.

“A dampening of the baby’s response to stress as a result of mother consuming extra choline during pregnancy would be expected to reduce the risk of stress-related diseases such as hypertension and type 2 diabetes throughout the life of the child,” she said.

She said additional studies are needed to confirm the study findings and further explore long-term effects. Dietary sources of choline include egg yolks, beef, pork, chicken, milk, legumes and some vegetables. Most prenatal vitamin supplements do not include choline.

“We hope that our data will inform the development of choline intake recommendations for pregnant women that ensure optimal fetal development and reduce the risk of stress-related diseases,” Caudill added.

The study has been published online in The Journal of the Federation of American Societies for Experimental Biology.

 

Reference

Jiang X, Yan J, West AA, Perry CA, Malysheva OV, Devapatla S, Pressman E, Vermeylen F, Caudill MA. Maternal choline intake alters the epigenetic state of fetal cortisol-regulating genes in humans. FASEB J. 2012 May 1. [Epub ahead of print]

 

Nutraceuticals and Headache: The Biological Basis

Headaches are a common and debilitating ailment from which most people suffer at one time or another. Common types of headaches include tension headaches, migraines, cluster headaches and sinus headaches. Headaches can have many causes, but serious causes of headaches are rare. 

This review discusses the biological basis for non-conventional or non-mainstream approaches to the treatment of migraine. Dr. Frederick Taylor discuss in this context magnesium, riboflavin, coenzyme Q10, petasites, feverfew, marijuana/cannabis, and oxygen/ hyperbaric oxygen.  

 

Frederick R. Taylor

Nutraceuticals and Headache: The Biological Basis

Headache 2011; 51 (3): 484-501

 

ABSTRACT

Nutrition must affect the structure and functioning of the brain. Since the brain has very high metabolic activity, what we consume throughout the day is likely to dramatically influence both its structure and moment to moment function. It follows that nutritional approaches to all neurological disorders are being researched and entering medical practice, while nutraceutical use is a mainstay of public habits. This review discusses the biological basis for non-conventional or non-mainstream approaches to the treatment of migraine. This requires at least limited discussion of current migraine pathophysiologic theory. How nutrients and other chemicals and approaches are mechanistically involved within migraine pathways is the focus of this article. The nutraceuticals reviewed in detail are: magnesium, riboflavin, coenzyme Q10, petasites, and feverfew with additional comments on marijuana and oxygen/hyperbaric oxygen. This article reviews the science when known related to the potential genetic susceptibility and sensitivity to these treatments. As we know, the basic science in this field is very preliminary, so whether to combine approaches and presumably mechanisms or use them alone or with or without conventional therapies is far from clear. Nonetheless, as more patients and providers participate in patient-centered approaches to care, knowledge of the science underpinning nutritional, nutraceutical, and complementary approaches to treatment for migraine will certainly benefit this interaction.

 

CoQ10 Levels Reduced In Septic Shock

The first report on the levels of CoQ10 in human subjects with septic shock was published online on August 9, 2011 in the journal Critical Care. Sepsis is an inflammatory state resulting from the spread of infectious agents in the bloodstream. Sepsis and septic shock are a major cause of illness and mortality in the USA, with over 215,000 deaths occurring each year. The finding in this study that CoQ10 is low in sepsis opens the possibility for potential therapeutic intervention as CoQ10 can be administered exogenously. 

 

Michael W Donnino, Michael N Cocchi, Justin D Salciccioli, Daniel Kim, Ali Naini, Catherine Buettner and Praveen Akuthota
Coenzyme Q10 levels are low and are associated with the inflammatory cascade in septic shock
Critical Care 2011; 15 (4): R189. [Epub ahead of print]


ABSTRACT

Introduction:
Mitochondrial dysfunction is associated with increased mortality in septic shock. Coenzyme Q10 (CoQ10) is a key cofactor in the mitochondrial respiratory chain but whether CoQ10 is depleted in septic shock remains unknown. Moreover, statin therapy may decrease CoQ10 levels but whether this occurs acutely remains unknown. We measured CoQ10 levels in septic shock patients enrolled in a randomized trial of simvastatin versus placebo.

Methods:
Post-hoc analysis of a prospective randomized trial of simvastatin versus placebo in patients with septic shock (ClinicalTrials.gov ID: NCT00676897). Adult patients with suspected or confirmed infection and the need for vasopressor support were included in the initial trial. For the current analysis, blood specimens were analyzed for plasma CoQ10 and low-density lipoprotein levels. The relationship between CoQ10 levels and inflammatory and vascular endothelial biomarkers was assessed using Pearson or Spearman correlations.

Results:
28 samples from 14 patients were analyzed. CoQ10 levels were low with a median of 0.49 (IQR: 0.26 – 0.62) as compared to healthy control patients (CoQ10 = 0.95 umol/L +/- 0.29; p < 0.0001). Statin therapy had no effect on plasma CoQ10 levels over time (p = 0.13). There was a statistically significant relationship between CoQ10 level and vascular cell adhesion molecule (VCAM) (r2 = 0.2; p = 0.008), tumour necrosis factor- (r2 = 0.28; p=0.004), interleukin (IL)-8 (r2 = 0.21; p= 0.015), IL-10 (r2= 0.18; p=0.025), E-selectin (r2= 0.17; p=-0.03), IL-1ra (r2 =0.21; p=0.014), IL-6 (r2=0.17; p=0.029), and IL-2 (r2=0.23; p=0.009). Adjusting for low-density lipoprotein (LDL) levels there was a statistically significant inverse relationship between CoQ10 and VCAM (r2 = 0.24; p = 0.01; Figure 3) and IL-10 (r2 = 0.24; p = 0.02).

Conclusions:
CoQ10 levels are significantly lower in patients with septic shock compared to healthy controls. CoQ10 is negatively associated with vascular endothelial markers and inflammatory molecules though this association diminishes when adjusting for LDL levels.

The complete article is available as a provisional PDF.

 

 

Researchers Strive To Increase Awareness Of Forgotten Essential Nutrient

A group of researchers at the University of Alberta in Canada hopes to draw attention to what has become a forgotten essential nutrient.

Choline, a nutrient found in foods such as egg yolks, liver and soybeans, does not appear to be high on anyone’s list of eating priorities.

And this is something researchers Jonathan Curtis, Catherine Field and René Jacobs say they want to change.

“It’s gone off the radar,” said Field, a researcher in nutrition and metabolism. “It’s not being taught in schools as being an important nutrient and so our dietitians and health professionals don’t think about it.”

Part of the reason choline has been overlooked is because it is produced naturally in the liver. But people can’t produce enough to reap the positive benefits the nutrient offers, Field said.

Though choline is not as heavily studied as other nutrients, the limited human and animal research published suggests adequate choline intake is important for fetal development, memory function and prevention of liver and muscle damage.

“Choline has many different biological functions related to healthy development and it plays a role in preventing various diseases,” said Jacobs, a biochemist who has studied choline metabolism for the past decade.

Despite its apparent health benefits, few Albertans seem to be getting enough choline in their diets.

“Our preliminary dietary studies clearly show an insufficient choline intake compared to the recommended levels,” said Curtis, an analytical chemist and project leader for ongoing choline research at the university.

According to the Institute of Medicine, women should consume 425 milligrams of choline per day — the equivalent of almost four whole eggs. This value is higher for men and pregnant women.

In an ongoing study looking at the nutrition of pregnant women in Edmonton and Calgary, few study participants are meeting the adequate intake for choline and only one of the first 600 women surveyed reported taking a supplement that contained the nutrient.

This statistic is surprising given that 97 per cent of women reported consuming at least one supplement.

“Nobody’s taking it,” Field said. “If there was information out there on choline, we’d see a lot more of it in this high social economic group we had.”

But even if people are aware of choline’s health benefits, they will have a hard time finding a supplement to help them meet the recommended adequate intakes.

It’s a lesson Field learned first-hand.

When she went searching for a supplement containing the type of choline found in eggs for study purposes, she couldn’t find one in any Canadian health food store or even on the Internet. She eventually had to ask Curtis and his lab group to make one.

And making choline supplements could be next on the agenda if research like that happening at the University of Alberta continues to point to the importance of choline for health.

In a continuing animal study, Field and her team are looking at the effects of choline during lactation — a critical period, but one not well studied.

“It’s the most nutritionally stressful period for a woman,” Field said. “Her nutritional needs are far greater than during pregnancy because she has to produce milk, an important source of choline, for this growing infant.”

New mother rats were fed diets with varying amounts of choline. The amount they consumed appeared to influence the health of their pups.

“The pups who were fed from the mums who didn’t have the choline in the diet survived, but they didn’t grow as well,” Field said. “If there’s a decrease in growth, or not a normal rate of growth, that has mega implications for later health.”

And those implications are now under the microscope as researchers examine the grown pups, looking at immune health and brain development.

Current funding for choline research projects will end in the spring of 2012. The research crew is applying for more grants this summer so they can establish appropriate choline intake levels and work towards making a choline supplement.

 

Roger Clemens, DrPH, speaks about choline- where it can be found and why the body needs it.

 

 

Study Shows Pine Bark Naturally Improves Heart Function

Research reveals Pycnogenol and CoQ10 taken as an adjunct to medication improves heart health: Blood volume output, physical fitness, blood pressure, as well as heart and respiratory rate

HOBOKEN, NJ – A recent study published in Panminerva Medica reveals that a Pycnogenol® and Coenzyme Q10 (CoQ10) combination (PycnoQ10®) taken by stable heart failure patients as an adjunct to medical treatment naturally strengthens the heart, increasing the blood volume ejected with each beat. As a consequence, the oxygen-rich blood supply to the organs improves, and patients become more physically energetic. Furthermore, blood pressure, heart rate and respiratory rates were improved among patients. Pycnogenol® (pic-noj-en-all) is an antioxidant plant extract from the bark of the French maritime pine tree and has been clinically proven to improve endothelial function and blood flow. As evidenced by this study, Pycnogenol®, in combination with CoQ10, offers a potent contribution to heart health management.

Each year there are an estimated 400,000 newly diagnosed cases of heart failure in the U.S., according to the National Heart, Lung and Blood Institute. Heart failure is a common, chronic, long-term condition that develops as a result of hypertension, when with heart chamber walls wear out and heart muscle weaken. The disease can be costly, disabling and potentially deadly and is characterized by the heart’s inability to pump or eject sufficient amounts of blood to the organs.

“Many conditions that lead to heart failure cannot be reversed, but heart failure can often be medically managed with good results,” said Dr. Gianni Belcaro, a lead researcher of the study. “This study shows that a combination of Pycnogenol® and CoQ10 offers an effective, natural solution as adjunct for heart health management.”

The 12-week single-blinded, placebo-controlled observational study was conducted at Chieti-Pescara University in Italy and investigated the effectiveness of Pycnogenol® and Kaneka CoQ10 (PycnoQ10®) supplementation in 53 patients. Patients were between the ages of 54 and 68 and had mild to moderate hypertension, with stable congestive heart failure. Patients recruited had been diagnosed with heart failure with an ejection fraction lower than 40 percent of their original capacity. The ejection fraction, the pumped blood volume to total left heart ventricle volume, was measured by high-resolution ultrasound. Additional inclusion criteria were a stable level of heart failure within the past three months and stable New York Heart Association (NYHA) class II (mild symptoms) or III (moderate symptoms) heart failure classification. NYHA functional classification system relates symptoms to everyday activities and the patient’s quality of life. All patients were taking prescribed heart medication and most patients used three or more drugs for heart failure treatment.

Patients were divided into two groups: One group received capsules with a combination of 15 mg Pycnogenol® and 50 mg CoQ10 from Kaneka. The second group received placebo capsules in addition to their individual prescription medications. The treatment and control groups were equivalent at baseline. Patients were instructed to take seven capsules, in the morning after breakfast, each day. Patients’ exercise capacity, as judged by walking on a treadmill, ejection fraction and distal edema (swelling in the leg) were evaluated.

At the conclusion of the 12-week study, there was significant decrease of systolic and diastolic pressure as well as a decrease in heart rate in the PycnoQ10® group, compared to marginal improvements in the control group. Systolic and diastolic pressure was notably lowered with PycnoQ10® from 139.2 to 133.2 mmHg and 82.3 to 77.3 mmHg, versus 140.3 to 139.5 mmHg and 83.4 to 81.2 mmHg in the control group. Heart rate was also significantly lowered from 78.4 to 74.2 beats per minute as compared to 79.1 to 78.4 in the control group. There was also considerable decrease in respiratory rate in PycnoQ10® patients from 23.1 to 21.2 breaths per minute versus 23.3 to 22.3 in the control group. The treatment with PycnoQ10® was found to significantly increase heart ejection fraction by 22.4 percent after treatment, whereas it only slightly decreased in the control group.

The physical abilities of patients improved substantially as evidenced by 3.3 times longer walking distance on a treadmill in PycnoQ10® treated patients, versus marginal improvement in the control group. As the heart is strengthened, a larger blood volume is pumped with every beat. This allows the heart to lower the beat rate and still sufficiently supply body organs with oxygen. The quality of life of patients also improved with PycnoQ10®, as validated with the Karnofsky Index, a performance scale that rates patients according to their functional impairment. At baseline patients had Karnofsky values of 43 percent, which is categorized as “handicapped and dependent on qualified medical help.” After treatment with PycnoQ10® the values were up to 54.7 percent, described as “help and medical assistance are often required.” No significant improvement of Karnofsky Index was observed in the control group. The distal edema, expressed as the percentage of the initial volumetric value, decreased significantly to 72 percent in PycnoQ10® treated patients but was increased by four percent in the control group. Nine PycnoQ10® treated patients (out of 32) and three (out of 21) taking placebo improved NYHA class.

“Coenzyme Q10 has been extensively researched for its ability to strengthen the heart muscle, specifically in patients with heart failure. Preclinical trials have suggested that Pycnogenol® strengthens heart chamber walls and dilates arteries,” said Dr. Belcaro. “These preliminary observations suggest that the respective contributions of Coenzyme Q10 and Pycnogenol® in PycnoQ10® may significantly improve heart health.”

The study showed decreased blood pressure and heart rate, confirming results from prior studies using Pycnogenol® and CoQ10. Previous studies have found that Pycnogenol® significantly improves endothelial function and consequently improves hypertension as well as long-term consequences such as renal function problems. To date, Pycnogenol® has been investigated in more than 30 clinical trials related to cardiovascular health.

 

Reference
Belcaro G, Cesarone MR, Dugall M, Hosoi M, Ippolito E, Bavera P, Grossi MG. Investigation of Pycnogenol® in combination with coenzymeQ10 in heart failure patients (NYHA II/III). Panminerva Med 2010; 52 (2 Suppl 1): 21-5.